

Hoverrace
by

SLOTHLab Productions

Pitch:
Hoverrace is a fast-paced racing game in which players control hovercrafts on a lake, which can
drift around corners. The player can choose between several different courses, each of which
provides its own challenges including tight turns in canyons, or exciting chases in wide-open
areas.

Setting:
The race courses are set on lakes, one of them is vaguely inspired by the mountains of Austria,
while another is a wide open lake, modeled after Lake Arenal. The game itself does not provide
any story or background justification for why the races are happening.

Game components:

Objects:
● Player vehicle
● Direction indicator
● AI-controlled vehicle
● Minimap
● Checkpoints
● Terrain
● Water
● GUI: Speed
● GUI: Time
● GUI: Race information
● Mouse
● Accelerate/Break buttons
● Drift left/right buttons

Attributes:

● Position for a vehicle
● Velocity for a vehicle
● Forward direction for a vehicle
● Target checkpoint for a vehicle
● Lap number for a vehicle
● Lap time for a vehicle

Markus Eger
Sticky Note
Name of the game

Markus Eger
Sticky Note
Name of your "game studio"

Markus Eger
Sticky Note
A short, one-paragraph description of your game that describes what it is about and what sets it apart from other games.

Markus Eger
Sticky Note
Optional, but if your game has some background story or particular world it is set in, or particular characters, you will want to include this

Markus Eger
Sticky Note
As discussed in class: Objects, their attributes and their relationships as a formal description of the mechanics. The level of abstraction should be chosen such that it is possible to start implementing the game, even if some particular values/details are not fully determined. For example, the AI described here turns and accelerates, but it is not specified how quickly.

● Race time for a vehicle
● Next checkpoint link for a checkpoint
● IsStart flag for a checkpoint
● x-position for the mouse
● Pressed-status for the buttons

Relationships:
● When the accelerate button is pressed, the player vehicle’s velocity is

increased in the forward direction
● When the break button is pressed, the player vehicle’s velocity is

decreased relative to its forward direction
● When the drift left/right button is pressed, the player vehicle’s velocity is

increased to the left/right of forward direction
● The velocity of each vehicle is decreased by friction each time step
● When a vehicle passes through its target checkpoint the target checkpoint

is set to the next checkpoint link of that checkpoint
● When a vehicle passes through a target checkpoint that has the IsStart

flag set, the lap number for the vehicle is incremented by one, and its lap
time is reset to 0

● When the player vehicle’s lap number changes, the GUI: Race
information text displays that for a few seconds

● The direction indicator always points in the direction of the target
checkpoint

● The GUI: Speed indicator shows the magnitude of the player vehicle
velocity vector

● The GUI: Time text shows the player’s lap time and race time
● When the x-position of the mouse is to the left/right of the center of the

screen, the player’s vehicle is rotated around its z-axis to the left/right,
proportional to how far the mouse is from the center of the screen

● When a vehicle collides with another vehicle, a checkpoint or the terrain,
the physics simulation determines how the vehicle is moved

● When the lap number of all vehicles exceeds 5, the race is ended, and
the GUI: Race information displays the race times of all vehicles,
declaring the vehicle with the lowest race time the winner

● When the AI player’s vehicle’s forward direction points to the left/right of
its target checkpoint, it is rotated to the right/left

● When the AI player’s vehicle’s forward direction is pointing at its target
checkpoint, it accelerates

Game mechanics:

In Hoverracer, players are placed in a Dieselpunk inspired hovercraft on a race course
set on a lake. The player controls one such hovercraft with WASD and the mouse, where
the keyboard allows the player to accelerate, break and strafe (move sideways), and the
mouse controls the rotation of the vehicle. The game uses a physics simulation to control

Markus Eger
Sticky Note
This is basically a nicer to read, less formal version of the mechanics. It should also include what players have to do to win or how they are judged (if applicable).

Markus Eger
Sticky Note
Note that there are no details on how the physics simulation actually works (In this case: Unity does that for us)

the vehicle: When the player presses one of the keyboard buttons, a force is applied to
the vehicle, which causes it to move in the appropriate direction. By using the mouse,
the player controls the forward direction of the vehicle, which changes which in direction
forces are applied to. Additionally, the friction coefficients between the water and the
vehicle are low, which results in the vehicle sliding along its trajectory, resulting in a
drifting motion around corners.
The goal of the game is to complete each race course faster than the AI opponent. The
race course is represented by checkpoints, with one of the checkpoints designated as
the start, and each checkpoint linked to the next checkpoint in the race course. The
player starts with the start checkpoint as its target, and when the player reaches their
target checkpoint, that target is set to the next linked checkpoint. In other words, the
player has to reach all checkpoints in order. When all checkpoints have been reached,
the target is set to the start checkpoint again, and the player is considered to have
finished a lap when they reach the start again. The race ends after a certain number of
laps (typically 5) have been completed. The time of each player is the time from when
they passed the start for the first time, to when they finish the last lap by reaching the
start again.

Note that this design also allows for race courses that are not circular, by linking
checkpoints sequentially, without reconnecting to the start.

Optional features:
Highscore list, achievements, obstacles that exert forces on the vehicles, multiple AI
opponents with different behaviors

Team Members:

Markus Eger: 6 years of Unity experience, 15 years of coding experience (including C#),
AI expert, zero art skills

Division of Labor:

Markus Eger: Gameplay, level design, player controls, UI, AI, finding appropriate art
assets, testing

Prototype Screenshot:

Markus Eger
Sticky Note
This section is optional, but might be nice to include in case you underestimated the effort, or some things don't work out as expected so you have backup ideas.

Markus Eger
Sticky Note
Include all team members and relevant skills, in particular Unity, coding, specific techniques you would use, art and music (if applicable for your game)

Markus Eger
Sticky Note
List which team member is expected to do which parts, ideally matched with the skills (e.g. if someone is more artistically inclined, they might be better suited for level or UI design)

Markus Eger
Sticky Note
It is not required to have any actual screenshots, but this would be the place to include concept art, even hand drawn, if you think that it would better illustrate your game idea.

